Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Transl Immunology ; 10(7): e1308, 2021.
Article in English | MEDLINE | ID: covidwho-1525428

ABSTRACT

OBJECTIVES: A recent single-cell RNA sequencing study by Wilk et al. suggested that plasmablasts can transdifferentiate into 'developing neutrophils' in patients with severe COVID-19 disease. We explore the evidence for this. METHODS: We downloaded the original data and code used by the authors in their study to replicate their findings and explore the possibility that regressing out variables may have led the authors to overfit their data. RESULTS: The lineage relationship between plasmablasts and developing neutrophils breaks down when key features are not regressed out, and the data are not overfitted during the analysis. CONCLUSION: Plasmablasts do not transdifferentiate into developing neutrophils. The single-cell RNA sequencing is a powerful technique for biological discovery and hypothesis generation. However, caution should be exercised in the bioinformatic analysis and interpretation of the data and findings cross-validated by orthogonal techniques.

2.
Mol Aspects Med ; 81: 100996, 2021 10.
Article in English | MEDLINE | ID: covidwho-1313325

ABSTRACT

Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Inflammation , Neutrophils , SARS-CoV-2
3.
Cell Rep Med ; 2(1): 100166, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-989408

ABSTRACT

Coronavirus disease 2019 (COVID-19) manifests with a range of severities, but immune signatures of mild and severe disease are still not fully understood. Here, we use mass cytometry and targeted proteomics to profile the innate immune response of patients with mild or severe COVID-19 and of healthy individuals. Sampling at different stages allows us to reconstruct a pseudo-temporal trajectory of the innate response. A surge of CD169+ monocytes associated with an IFN-γ+MCP-2+ signature rapidly follows symptom onset. At later stages, we observe a persistent inflammatory phenotype in patients with severe disease, dominated by high CCL3 and CCL4 abundance correlating with the re-appearance of CD16+ monocytes, whereas the response of mild COVID-19 patients normalizes. Our data provide insights into the dynamic nature of inflammatory responses in COVID-19 patients and identify sustained innate immune responses as a likely mechanism in severe patients, thus supporting the investigation of targeted interventions in severe COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate , Adult , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Female , Humans , Male , Mass Spectrometry , Middle Aged , Monocytes/cytology , Monocytes/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Proteomics/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sialic Acid Binding Ig-like Lectin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL